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Abstract 
 
Research on learning has previously focused on changes in knowledge and 
behavior occurring over long periods of time, such as over a period of hours, 
weeks, months and years. However, there is no doubt that learning-contingent 
changes in knowledge and behavior are mediated by neural processes 
occurring at much shorter timeframes (e.g., milliseconds), including the time 
between a single observable behavioral event, that help determine whether 
learning occurs. In addition, current applied research in education requires 
experimentation and assessment in authentic contexts within which learning and 
performance take place in order to provide ecologically valid results with respect 
to contemporary contexts that involve social interaction. We argue that it is now 
time for the field of neuroeducation to relate psychophysiological and behavioral 
data across time scales. Globally, a better understanding of the underlying 
cognitive processes occurring during different components of learning. This 
should lead to novel learning environments, greater and more efficient 
interactivity between teacher and learner(s), better assessment tools leading to 
qualitatively and quantitatively better development of knowledge and skills in key 
domains such as teaching, business, health professions, engineering as well as 
other domains targeting human development and well-being. Along these lines, 
this paper presents a research program oriented towards the modeling of 
learning trajectories and performance at psychophysiological, cognitive and 
social levels. The projected research findings should allow for more significant 
understandings of the implication of cognitive neuroscience in education by 
linking results with more authentic learning and performance situations. 
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1. Introduction 
 
Neuroeducation is a very dynamic field despite its relatively short history. We 
share the enthusiasm of many authors regarding the potential of this research 
for the improvement of learning. However, we are much more circumspect 
regarding its impact to date. Neuroeducation has been informative on crucial 
aspects of learning not tractable using traditional approaches in education. 
Notably, this field has shed new light on aspects of learning to read (Hruby, 
Goswami, Frederiksen, & Perfetti, 2011) and mathematics (Grabner & De 
Smedt, 2012). However, so far, the nature of these findings makes it difficult 
to translate them into prescriptions for educational practice (Hruby, 2012). 
The long-recognized divide between the contexts of experiments and the 
contexts of application of their results may just resurface abruptly with the 
advent of neuroeducational research (Ansari, Coch, & De Smedt, 2011; 
Turner, 2012). In contrast, research in applied cognitive science has led to an 
unprecedented set of implications in education, including for example how 
people take charge of their learning (Greene & Azevedo, 2010), how 
interactions with peers are beneficial or detrimental to learning (Kirschner, 
Paas, & Kirschner, 2011) and how a domain expert or a computer-based 
learning environment can foster learning through tutoring (VanLehn, 2011). 
However, these studies hinge on behavioral records of human action, and do 
not consider psychophysiological data, which can provide important 
complementary information. In sum, the objectives and means of behavioral 
studies in cognitive science on the one hand and cognitive neuroscience on 
the other hand are partly tangential to the type of research in neuroeducation 
advocated in this paper. The potential and limitations of their integration 
should be explored now that the field is being defined in terms of theoretical 
foundations, methodological approaches and research questions (Ansari et 
al., 2011). 
 
Most of the research on learning has so far focused on changes in knowledge 
and behavior occurring over long periods of time, such as over a period of 
hours, weeks, months and years. However, learning-contingent changes in 
knowledge and behavior are mediated by neural processes occurring at much 
shorter timeframes (e.g. milliseconds), including the time between a single 
observable behavioral event, that help determine whether learning occurs 
(Anderson, 2002; Fincham, Anderson, Betts, & Ferris, 2010). Furthermore, 
every moment during which a teacher interacts with a student, he/she makes 
decisions about the provision of support such as scaffolding and feedback 
that influence learning efficacy (VanLehn, 2011). Indeed, events occurring at 
the grain size of social interaction are related to events occurring at the grain 
size of learning (Anderson, 2002). 
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Research in education is at a turning point where approaches and protocols 
can inform us about optimal interventions at this level of interaction so that 
the teachers can be supported to make better decisions during student-
teacher interactions (Kent, 2013). 

Which principles, mechanisms and theories studied in educational 
research can be extended on the basis of findings from cognitive 
neuroscience? Which principles, mechanisms and theories studied 
in cognitive neuroscience might have implications for educational 
research? What research questions can be developed on the basis 
of these implications? What form could an interdisciplinary or 
transdisciplinary research program take? (de Jong et al., 2009, 
p. 2).  

Research in neuroeducation can contribute answers to these questions by 
conducting studies through innovative methodology in education by engaging 
in dialogue with researchers from other pertinent fields involving cognitive 
neuroscience, such as neuroergonomics because of its focus on natural 
performance situations (see Parasuraman, 2012; Posner, 2012). These 
answers should have a profound impact on how learning is understood and 
on how learning environments are designed and implemented for academic 
and professional learning. By hinging on a better understanding of learning, 
such learning environments could offer a greater interactivity, and even 
reactivity to the learner by incorporating better assessment tools leading to 
qualitatively and quantitatively enhanced development of knowledge and 
skills in key domains such as business, health professions, the military, 
engineering as well as teaching and other domains targeting human 
development and well-being. The view presented complements and extends 
current approaches from cognitive neuroscience in education. The aim of this 
paper is to present theoretical and methodological prescriptions for the field of 
neuroeducation that can fruitfully complement existing research and to 
provide an illustration of the advocated program of research through a 
presentation of a study in preparation. 
 

2. A framework for a neuroeducational research program oriented on 
time scales 
 
Projected research can be shortly described as adding a psychophysiological 
layer to existing empirical cognitive research on learning, sometimes in 
situations involving human interactions. This research program can be 
defined as the concomitant study of psychophysiological, cognitive, and even 
social aspects of learning. It has the following question at its core: How does 
learning arise from psychophysiological, cognitive and social cognitive 
processes during learning interactions? 
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The development of this research agenda requires major efforts in three 
synergistic aspects: (1) the development of theoretical foundations (2) the 
development and testing of research methodology and (3) conducting 
empirical research.  
 
2.1 Developing theoretical foundations 
 
The development of theoretical foundations in neuroeducation involves the 
amalgam of existing theories describing (1) cognitive functioning, (2) the 
psychophysiological substrates of behavior and learning, and (3) the social 
processes of learning situations. The resulting view borrows from diverse 
disciplines including, but not limited to, education, educational psychology, 
cognitive psychology, cognitive neuroscience, and social neuroscience.  
 
According to many authors (Anderson, 2002; Fincham et al., 2010; Newell, 
1990; Sun, 2006), the questions of what is learning and how to foster this 
process can only be understood completely using a multi-layered view of 
human behavior and a reciprocal interaction of various processes. Based on 
actual work in cognitive modeling, this perspective also posits that all levels 
below a given level are necessary to explain functioning at that level (Newell, 
1990). This raises new questions: what are the psychophysiological 
signatures of learning? What are the psychophysiological signatures of 
productive cooperation in group learning tasks (at the group level and at the 
individual level)? What is going on in people’s mind when they are not talking 
during group work in learning situations? How can we make group work in 
learning tasks as efficient as individual learning while achieving learning 
results greater than the sum of its parts? Mercier, Léger, Girard, and Dion 
(2012) summarized the data and processes that will be put in relation in 
unique ways in the projected research.  
 
At this time, we have identified specific domain-generic processes that are 
relevant to learning and amenable to valid psychophysiological measurement 
in authentic learning contexts. These processes include cognitive load 
(Antonenko, Paas, Garbner, & van Gog, 2010), task engagement (Freeman, 
Mikulka, Scerbo, & Scott, 2004), drowsiness/alertness (Stikic et al., 2011) as 
well as attention (Klimesch, Doppelmayr, Russegger, Pachinger, & 
Schwaiger, 1998) and emotions (Fulmer & Frijters, 2009). 
 
2.2 Developing research methodologies  
 
A second aspect of the research program is the development and testing of 
new experimental protocols associated with the use of 
electroencephalography (EEG) and adapted to an ecologically-valid 
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educational context in which naturalistic interactions occur over extended 
periods of time. This involves obtaining interpretable data from 
psychophysiological measurements. Operations needed to obtain fine-
grained state data of brain activation associated with cognitive functions 
within social interactions in learning contexts include decontamination 
algorithms, signal transformation, and the mapping of activation patterns with 
low-level (in the sense of high temporal resolution) cognitive functions. We 
propose that this is best achieved by analyzing EEG data from the 
perspective of characterizing the brain activation at specific sites over time. 
This approach is referred to as the time-frequency analysis of EEG data 
(Roach & Mathalon, 2008). Spectral decomposition of oscillatory patterns in 
neuronal activity – determining which frequency is present for a given period 
and its power – coupled with the localization of the source of this activity, is 
indicative of brain functions that occurred during that period. Four frequency 
bands are commonly used in the interpretation of EEG data in this manner: 
delta (<4 Hz), theta (4-7 Hz) alpha (8-13 Hz) and beta (>13 Hz). 
 
For exemple, Pope, Bogard and Bartolome (1995) developed a task where a 
subject would be either solicited by a system (manual mode) or not 
(automatic mode). Collecting EEG signal and comparing mental states during 
manual (engaged) mode versus automatic (disengaged) modes, Pope’s team 
tested multiple ratio candidate that would better fit the two conditions, based 
on the vigilance literature (Davidson, 1988; Lubar, 1991; Offenloch & Zanner, 
1990). They established the best index of mental engagement to a task 
related to the sum of powers of beta / (alpha+theta) of EEG signal collected at 
the sites Cz, Pz, P3 and P4 on a 10-20 montage. This index of engagement 
was also validated in the field of neuroergonomics, in the work of Freeman, 
Mikulka, Prinzel, and Scerbo (1999), Freeman et al. (2004) and Mikulka, 
Scerbo, and Freeman. (2002). Transferred to neuroeducation, the value of 
this approach lies in the possibility to extract educationally-relevant 
information from psychophysiological data during the course of human action 
in a learning activity as traditionally recorded in applied cognitive science. By 
focusing on different system levels and time scales and the relationship 
between them, this approach may also contribute to bridging existing 
laboratory results focusing on short-term processes with instructional practice 
as understood by its practitioners.  
 
Another methodological development involves designing strategies for 
integrated data analysis, such as intra- and inter-level sequential, co-
occurrence, and prevalence approaches, applied to shorter and shorter time 
scales (see Kapur, 2011). Although not essential, designing methods for 
automated data analysis should be actively pursued to boost the production 
of results. Extracting fine-grained state data from each “numerical” data 
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source using algorithms derived from large populations of subjects seems 
worthwhile and more feasible with levels of analysis of a more “semantic” 
nature, such as speech and interaction, as current research on intelligent 
tutoring systems shows (Chi, VanLehn, Litman, & Jordan, 2011). 
 
EEG source imaging has made tremendous progress in recent years to 
provide neurophysiological interpretations of scalp recordings (Astolfi et al., 
2010). By showing the location of activation, source analysis brings additional 
explanatory power to EEG measurements and is now becoming the norm in 
the use of EEG in cognitive neuroscience. When no a priori assumptions can 
be made regarding the localization of activation (as it is practically the case in 
the study of learning interactions), mathematical solutions can be used 
effectively to determine (1) when brain activation maps differ over time, thus 
segmenting microstates representing relatively stable brain activation 
patterns and (2) the localization of brain activation during those microstates 
(Lehmann, Osaki, & Pal, 1987). Those microstates have explanatory power 
and represent functional “mind-states” during information-processing. They 
have to be further interpreted by the fine-grained localization of brain activity 
using recent event-related potential (ERP) studies, representing cognitive 
functions responsible for learning (e.g. social learning, metacognitive 
regulation in problem solving, insight in problem solving, implicit and explicit 
learning, etc. (see de Jong et al., 2009)). This interpretation relies critically on 
sufficient spatial sampling. For brain activity sampled at 1000 Hz, it is 
possible to extract discrete brain states of between 80 and 120 milliseconds 
by statistical estimation (Lehmann & Michel, 2011). Such microstates, and 
especially how they get modulated both in terms of sequence and duration, 
can be related to cognitive and interpersonal events (Grafton & Tipper, 2012). 
The study of these microstates represents aspects of the answer to the first 
question: what is the neurophysiological signature of learning? 
 
2.3 Conducting empirical research  
 
Projected empirical research will be conducted to provide elements of answer 
to three main interrelated questions focusing on how sequences of events 
caused learning (the so-called precursors referring to both antecedents or co-
occurring events): (1) What is the psychophysiological signature of learning? 
(2) What are the cognitive precursors of learning? (3) What are the social 
precursors of learning? Without answers to these three questions, it is not 
possible to know precisely when learning occurred and why it happened in 
authentic contexts, either from a cognitive or social (human interaction) point 
of view, since those contexts routinely involve self-directed and supervised 
learning activities. The strategy involves using psychophysiological methods 
in authentic contexts in conjunction with all available precautions and 
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pertinent analytical approaches to minimize measurement flaws associated 
with those contexts (Gevins, Chan, & Sam-Vargas, 2012). Contextual factors 
in which the studies will be positioned can be mapped onto various 
dimensions pertaining to how dyads of learners or a teacher and student 
interact, including how pertinent knowledge is distributed across individuals.  
 
2.3.1 Proof of concept from the field of human factors 
 
Much of recent teamwork research has used externalized events focusing on 
who is a member of the team, how they work together and what they do to 
perform their work. There have been fewer studies looking at the complex 
dynamics of how teamwork interactions unfold (Mathieu, Maynard, Rapp, & 
Gilson, 2008). Macrocognition (Warner, Letsky, & Cowen, 2005) is one 
framework for studying team interactions, and is defined as the externalized 
and internalized high-level mental processes employed by teams to create 
new knowledge. To its extreme, macrocognition involves considering a small 
group (constituted of three or more people who interact directly) as a single, 
unified thinking system. External processes are those associated with 
observable actions and measurable in a consistent, reliable, repeatable 
manner. Internalized processes are indirectly approached through qualitative 
metrics like think aloud protocols or surrogate quantitative metrics like pupil 
size, EEG or skin conductance. Speech provides a detailed and dynamic 
representation of teamwork. When team members interact, their 
communication streams contain information about knowledge, uncertainty, 
awareness of the situation, stress and other cognitive states (Cooke, 
Gorman, & Kiekel, 2008). Speech has structure in the content of what is 
being said, in flow, and relating to who is speaking along with specific speech 
functions. Speech is also sequential, temporal and relational as people tend 
to speak one after another and what is currently being said has temporal 
antecedents (Gorman, 2005). Communication streams and other non-verbal 
behavioral data are central for studying teamwork, yet additional measures 
would be useful which are relevant, unobtrusive, obtained in real-time, and 
can be practically implemented (Salas, Cook, & Rosen, 2008). 
 
Newly available psychophysiological approaches are providing such 
measures. Across multiple teamwork tasks, Stevens, Galloway, Berka, and 
Behneman (2010) found that psychophysiological patterns were shown to be 
non-random and sensitive to changes in the task and the activities of team 
members. These studies suggest that neurophysiologic correlates measured 
by EEG may be useful for studying team behavior not only at the milliseconds 
level, but at more extended time frames. Stevens, Galloway, Wang, and 
Berka (2011) more recently argued that neurophysiological data may 
complement communication metrics as measures of group cognition. 
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Projected research builds on these breakthroughs in the field of human 
factors and relates them to a single, dramatically important variable: learning. 
 
2.3.2 An example of a study: a teacher coaching a student in classic problem-
based learning 
 
Many perspectives have shown that the success of tutorial interaction for 
learning depends essentially on the contingency of the help on the learner’s 
needs (Fincham et al., 2010; Wood & Wood, 1999; VanLehn, 2011). This 
contingency depends on the moment-to-moment interaction between the tutor 
and the tutee(s) during the learning activity. In our opinion, this important 
phenomenon has been studied in research of exceptional quality regarding 
the functional aspect of discourse. Our extensive literature review suggests 
that the underlying brain activity has been much less, insufficiently studied in 
the learner, not studied in the tutor, and even less concomitantly in both 
during the course of a tutorial interaction. Indeed, these studies are based on 
conversation data, which represent partial records of participants’ cognitive 
activity since obviously they cannot all speak at the same time. The 
overarching goal of this study is to further test and contribute to theory 
regarding tutorial interaction, reputedly the most effective teaching method 
since 25 years (VanLehn, 2011).  
 
As a starting point, a study in preparation will further examine the causes of 
this efficiency as this type of tutorial interaction unfolds in classic problem-
based learning (PBL). PBL is a situation extended in time over a few sessions 
in which a group of students learn with the help of a coach on the basis of 
jointly-determined “learning issues” (Barrows, 1986). PBL is widely used 
worldwide in higher education, particularly in medical education. The causes 
of this efficacy pertaining to the interaction are still intricate and can involve 
the tutor’s initiative, the learners’ initiative, or their joint initiative (Chi, Siler, 
Jeong, Yamauchi, & Hausmann, 2001). Answers to a vast quantity of critical 
questions including the following cannot be obtained by relying only on 
conversational data: How accurate is the teacher monitoring of students’ 
learning state? What is the impact of answering the question of one student 
on the other students? What is the impact of inter-student conversation? 
What is the impact of “classroom” processes on the teacher thought 
processes? 
 
Through a multi-level view of cognition (Newell, 1990) centered on learning 
(Anderson, 2002) which postulated functional relations between brain activity, 
cognitive functioning and social interaction (Sun, 2006), this study will 
examine how intra- and inter-level relations determine the regulation of inter-
individual interactions in a learning context as well as their effects on 
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students’ learning. Five two-hour tutoring sessions, part of a regular physics 
class at UQAM will be videotaped. Electroencephalography will be recorded 
for the student and his coach. The orientation and sharing of their attention 
will be established through eye-tracking goggles. All data will be synchronized 
to the 1000th of second. The analysis will establish the intra and inter-
individual, as well as intra and inter-level (psychophysiological, cognitive, and 
social) sequential dependencies. The following questions represent the 
framework for data analysis. 
 
What is the best tutorial interaction as determined by psychophysiological, 
cognitive and social processes? The first questions have to be answered 
separately for each level (psychophysiological, cognitive, social) for each 
individual in the learning interaction before answering the second question. 
Because it is the most substantiated by theory, the cognitive level serves as 
the “anchor” in the analysis. The first question is : (1) What are the indicators 
of contingency of tutor help on learners’ needs in tutoring? This question is 
broken down into three sub-questions: (1.1) What are the indicators of 
decision-making in the coach (diagnosis of learners’ state, planning of tutorial 
moves, and evaluation of enacted moves)? (1.2) What are the indicators of 
learners’ difficulties and success in problem-solving? and (1.3) What are the 
relationships between these indicators and learning results? Elements of 
answer to all these questions are then put in relation in answering the second 
main question: (2) What is the correspondence between psychophysiological, 
cognitive, and social indicators of contingency in tutoring interaction?  
 
Briefly, the analysis of the neural data involves preserving the synchronization 
of the data for all levels, the identification of critical events on the basis of 
theory of tutoring, the specification of brain regions likely to be associated 
with these events (either confirmatory or exploratory) and finally to establish 
the intra and inter-level and intra and inter-individual causal correspondences 
on the basis of the temporal co-occurrence of events associated with every 
“trace”.  
Answers to the aforementioned questions should contribute to develop 
tutoring skills in educators by giving them additional keys to interpret their 
student’s behavior and talk during learning interactions. These results should 
also begin to show the potential and pitfalls of student-modeling based on 
psychophysiological tracing for human tutors and later, for next-generation 
intelligent tutoring systems. 
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3. Conclusion 
 
This article presented a general framework that can contribute in the 
development of bridges between educational and neuroscientific research. 
We strongly believe that researchers in neuroeducation can establish new 
research perspectives regarding how people learn, including in social 
contexts, by getting access to more complete information about the human 
mind across the multiple time scales pertinent to explain learning. While 
neural correlates of learning present high potential for the study of beneficial 
and detrimental conditions for learning, the vast majority of the best studies of 
learning rely on inferences about brain functioning based on behavior. The 
shortcoming of such inferences resides in the simple fact that 
psychophysiological processes occur faster than anything than can be 
measured behaviorally. By the direct access to brain activity in learning 
contexts that can even include social interaction, the assumptions regarding 
the psychophysiological level can be empirically tested. In our opinion, the 
key questions identified before are among the most central that the field of 
neuroeducation has to address. The framework associated with those 
questions can be further operationalized using pertinent concepts and 
methods to connect with current topics in learning and instruction. Examples 
of such topics for which research as envisioned here can be undertaken at 
the present include cognitive load (Antonenko et al., 2010), engagement 
during learning tasks (Freeman et al., 2004; Charland, Allaire-Duquette, & 
Léger, 2012), and human and computer tutoring (Mercier & Charland, 
submitted). At the moment, spectral analysis of EEG data is the approach of 
choice for this research, but current advances in single-trial in P300 
classification are likely to provide additional alternatives (Debener, Minow, 
Emkes, Gandras, & de Vos, 2012; Mattout, 2012). In this context, it is 
encouraging to note that recent experiments with portable EEG suggest that 
gains in ecological validity outweigh losses in measurement quality (Gevins et 
al., 2012; Debener et al., 2012). After many decades of theorizing and 
formulating promises about this kind of research, the time has finally come 
where it is possible to conduct high-potential research in education involving 
the integration of psychophysiological and behavioral data. Technological 
developments in the acquisition and analysis of psychophysiological data 
have recently led to the availability of appropriate equipment. 
 
Because of the inherently complex nature of most learning situations, it is 
imperative that research in neuroeducation be grounded in authentic and 
even interactive contexts to have its full impact on fostering learning. The 
view presented can contribute to forge aspects of the missing bridge between 
research in education and research in neuroeducation. Thus, fostering the 
impact of neuroeducation in educational practice involves the specification of 
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contexts and social interactions most critical to learning and most common in 
learning contexts and the study of their psychophysiological and behavioral 
aspects. It is now time to begin developing the expected theoretical, 
methodological, and empirical advances in order to foster theoretically-driven 
and empirically-based educational implications of neuroeducational research. 
This work was not possible until very recently. 
 
Projected research will have applications at different levels of instructional 
design and will be determinant in inventing the learning environments of the 
21st century. The findings of the proposed research should lead to the design 
of radically new learning environments involving teachers, instructors, and 
learning software. These environments will have increased potential to be 
optimally contingent on the learners’ needs, which are transitioning rapidly 
during the course of a learning task, during a school day, and across learning 
domains. Contingency, the dynamic matching of the learning environment 
and the learner’s state, inherently imply that the more temporally fine-grained 
characterization of the learner’s cognitive state will make possible very fine-
grained adaptations of the learning environment in terms of moment-by-
moment instantiations of specific modes of scaffolding and feedback, which 
will lead to more learning. Teaching interactions - whether in the classroom or 
distance learning - will be improved by mapping characteristics of the 
interaction with their non-behavioral fine-grained impact on learning 
(information on processing by the student(s) and teacher that does not disrupt 
the natural interaction) so that learning inductive conversation patterns can be 
identified and reproduced in face-to-face or technology-mediated interaction. 
Learning activities will be better designed given novel information regarding 
learners’ cognitive processing during those tasks (for example, engagement 
and cognitive load) coupled with performance measures during these 
activities. Learning materials will be better constructed by “customizing” them 
with the learner needs as measured by processing and related with student 
cognitive behavior. Finally, as a specific case, the development of interactive 
learning environments would benefit from these data to reinforce both the 
expert module (how the knowledge is represented in the system) and 
diagnosis module (how the learner’s needs are determined), as well as the 
planning module (how instruction is sequenced) and teaching module (how 
the knowledge is presented to the learner) that would in turn serve as 
research environments regarding the mapping of constraints between the 
psychophysiological, cognitive and social aspects of learning and 
performance. The research will require a long time and coordinated efforts 
from a substantial number of researchers. It is hoped that the perspective 
outlined and the themes identified will help foster the necessary bridges 
between educational research and neuroeducation. 
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